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ABSTRACT
Computational modelling of music similarity constitutes a key element for music information retrieval and
recommendation systems. Similarity models and analysis are also important for research in musicology
and music perception. In this study, we test feature preprocessing with Restricted Boltzmann Machines
in combination with established methods for learning distance measures. Our experiments show that this
preprocessing improves the overall generalisation results of the trained models. We compare the effects of
feature preprocessing on distance function learning using gradient ascent and support vector machines. The
evaluation is preformed using similarity data from the MagnaTagATune dataset, which allows a comparison
of our results to previous studies.

1. INTRODUCTION

Music similarity is a core concept used in many appli-
cations in Music Information Retrieval, such as music
recommendation, exploration and classification. More-
over, similarity is important in music research into as-
pects such as provenance or originality as well as in mu-
sic analysis, e.g. in paradigmatic analysis.

In this study we provide an analysis of the effect of pre-
processing feature vectors with Restricted Boltzmann
Machines (RBMs) on learning similarity measures on
music audio. RBMs determine a non-linear transform the
feature space in an unsupervised learning step. RBMs
have been used successfully for learning and represent-
ing audio features in other applications (see [6, 15] and
below), but to our knowledge, no research on audio simi-
larity learning from user ground truth has been done with
RMBs so far.

In this paper we model audio similarity using standard
machine learning techniques (Support Vector Machines
and Gradient Descent) for adapting a weighted distance
measure to human similarity ratings. The weighted Eu-
clidean distance measure is used for modelling the dis-
tance, or inverse similarity of two songs. The dataset
used in these experiments is part of the MagnaTagATune
dataset, consisting of relative similarity ratings between
pairs of clips.

The unsupervised training of the Restricted Boltzmann
Machine does not directly optimise the similarity mea-
sure, as it does not include the similarity ground truth.
However, Restricted Boltzmann Machines have been
shown to help in other tasks by transforming the fea-
ture space in a way that makes machine learning easier.
The transformations change the space of functions that
can be modelled by parameterising simple models, e.g.
by including interactions between individual features. A
transformation into a more suitable representation, deter-
mined by unsupervised training, can thus lead to better
adaptation of the model to given similarity data.

The code used for the experiments in Section 5, contain-
ing an RBM toolbox for Matlab, can be retrieved online1.

2. RELATED WORK

The weighted Euclidean distance used in this paper is
a special case of the Mahalanobis metric [11], provid-
ing a standard model for a parametrized similarity mea-
sure. The weighted Euclidean distance weights the fea-
tures but, in contrast to the full Mahalanobis matrix, not
the interaction between features.

So far, different data sources have been used for learn-
ing distance measures to address specific scenarios and

1http://mi.soi.city.ac.uk/blog/codeapps/

camiraes2013

AES 53RD INTERNATIONAL CONFERENCE, London, UK, 2014 January 27–29
1



Tran et al. Feature Preprocessing with RBMs for Music Similarity Learning

availability of data sources: Working in a music recom-
mendation scenario, McFee et al. [12] and Lim et al.
[10] adapt a music similarity towards collaborative fil-
tering data. They use Mahalanobis metrics to describe
a parametrized linear combination of content-based fea-
tures, using Metric Learning to Rank (MLR) for train-
ing. The similarity is calculated in kernel space. Ellis
and Whitman [2] use relative similarity data from a com-
parative survey on artist similarity for comparison with
similarity metrics learnt from similar artist lists from the
All Music Guide2.

This study is based on a subset of the MagnaTagATune
dataset [7], which is based on music from the Magnatune
label. We use the data from the bonus round where
users where asked to identify an outlier within three au-
dio clips. Stober and Nürnberger [22] used this dataset
to compare algorithms for linear and quadratic optimisa-
tion of a similarity measure based on feature weighting.
They applied early fusion of the feature data followed
by adapting a linear model. The training approaches in
[22] have been compared to MLR and SVM-Light by
Wolff et al. [27]. By using the same features and simi-
larity data, which are both available online, and the same
SVM-Light implementation we aim to make our results
comparable to these earlier findings.

The effect of the selection of feature information and
their representation for similarity learning have been
analysed in experiments by Wolff and Weyde [26]. These
experiments show variable results, but combining fea-
tures with complementary information leads to the best
learning results. Feature dimension reduction with Prin-
cipal Component Analysis (PCA) can have a positive or
negative effect depending on the learning model used.

In this paper we use unsupervised training with Re-
stricted Boltzmann Machines [20] to transform the fea-
ture space. Recently, several algorithms have been de-
veloped, which are able to learn features from datasets
in different domains [4, 5, 9, 8, 16, 24]. In applications
to computer vision, the state-of-the-art feature learning
shows similar or better performance compared to non-
learning algorithms [9, 8, 16].

Schlüter and Osendorfer [17] used RBMs to model sim-
ilarity regarding musical genre. They applied a Mean-
Covariance RBM on processed Mel Frequency Cepstral
Coefficients (MFCC) to learn local high-level features
and aggregated them to feature histograms for whole

2http://www.allmusic.com/

songs. The similarity of songs is then quantified as dis-
tance between the songs’ feature histograms using five
measurement methods: cosine distance, the Euclidean
metric, Manhattan distance, and symmetrized Kullback-
Leibler and Jenson-Shannon divergence. Hamel and Eck
[3] also used Deep Belief Networks (DBN) for genre
classification with a Gaussian kernel Support Vector Ma-
chine (SVM) and showed improvements on their base-
line approach.

Nam et al. [13] used DBNs for automatic transcription of
piano music using a similar SVM classifier. Their trans-
formations of spectrogram features showed improved
performance both when using the first hidden layer of an
RBM and when fine tuning a DBN via backpropagation.
A methodical overview for using learnt features for MIR
tasks has been presented by Nam et al. [14]. They further
show the effectiveness of their approach in tag classifica-
tion with linear kernel SVM on the CAL500 dataset.

Schmidt et al. [18] applied DBNs to learn three types of
emotion-based acoustic features. Their experimental re-
sults showed that the sort-time features learnt by DBN
outperform MFCC, Chroma, Spectral Shape, ENT, and
Spectral Contrast. The performance is further improved
by the outputs from hidden layers of DBN trained on
multi-frame and universal background model features.

Dieleman et al. [1] applied Convolutional Deep Belief
Networks to learn from audio features and metadata in
the ‘Million Song Dataset for artist recognition, genre
recognition, and key detection. In all three tasks, they
first train the DBN and subsequently use it as initializa-
tion of a multilayer perceptron. As reported, their ap-
proach achieved better performance than naive Bayesian
and windowed logistic regression models.

Our approach differs from previous work in that it trans-
forms mid-level feature representations such as chroma,
timbre and genre tag information instead of more low-
level audio descriptors such as MFCCs or spectrogram
frames. The transformations are achieved using RBMs
with unsupervised learning, which are summarised in the
following section.

3. FEATURE SPACE TRANSFORMATION WITH
RESTRICTED BOLTZMANN MACHINES

A Restricted Boltzmann Machine (RBM) [20] is a two-
layer connectionist system characterized by an energy
function E
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E(v,h) =−∑
i j
viwi jh j−∑

i
aivi−∑

j
b jh j (1)

to represent the joint distribution:

P(v,h) =
1
Z

exp(−E(v,h)) (2)

with the partition function Z = ∑v,h exp(−E(v,h)).
Here, v,h describe the states of the visible and hidden
layers, W represents connection weights, and a,b hold
biases for visible and hidden layers respectively. Since

Fig. 1: Restricted Boltzmann Machine

all units in one layer are independent of each other, the
state of a hidden unit depends only on the states of visi-
ble units and vice versa. The probability of a unit being
activated is:

P(h j = 1|v) = σ(∑
i
viwi j + b j) (3)

P(vi = 1|h) = σ(∑
j
h jwi j + ai) (4)

where σ(x) = 1
1+exp(−x) is the logistic sigmoid function.

Unsupervised training of an RBM means to maximize its
average log-likelihood ˆ̀ (or equivalently the product of
probabilities) given a set of independent and identically
distributed samples V = {v(1),v(2), ...,v(n)}

ˆ̀ =
1
N

ln(L (θ |V )) =
1
N ∑

k
lnP(v(k)|θ) (5)

with θ = {W,a,b}. This can be achieved using gradi-
ent ascent. However, to compute the exact gradient from
the log-likelihood it is needed to compute the partition
function Z. For this, the gradient ascent requires an ex-
pectation of data sampled from the model as

wi j = wi j + η(〈vi p(h j|v)〉0−〈vih j〉∞). (6)

Here, 〈.〉0 is the average with regards to the data distribu-
tion, 〈.〉∞ is the average with respect to distribution from
the model, and η is the learning rate.

An approximate approach to this problem is to sample
the states from the model using Markov Chain Monte
Carlo (MCMC). This method, however, is very slow
and unstable since the model needs to perform a long
and unspecified pre-sampling process before reaching an
equilibrium state and generating valid samples. Hin-
ton [4] proposed an algorithm named Contrastive Diver-
gence (CD) showing how even with small number of run-
ning steps of pre-sampling (even only 1 step) the learn-
ing can approximately minimize the divergence between
data distribution and the distribution of model:

wi j = wi j + η(〈vih j〉0−〈vih j〉n). (7)

When setting the visible layer of an RBM to the origi-
nal feature values of a song, the hidden layer represents
a non-linearly transformed feature space, which we eval-
uate for similarity learning in the experiments below. As
an important hyperparameter, the number of units in the
hidden layer (hidNum) determines the dimensionality of
the new feature space, and is particularly examined in
figs. 3 and 4. The Matlab source used for training Re-
stricted Boltzmann Machines is available for download3.

4. SIMILARITY MODELS

The similarity models we compare in this paper are based
on a weighted Euclidean metric. The weighted distance
of two song’s feature vectors is used as the inverse indi-
cator for those songs similarity. The weighted Euclidean
distance of two feature vectors x,y ∈ RN is defined as

dist(x,y) =
√

∑aidi, (8)

where di(x,y) = (xi− yi)
2 (9)

Here, the facet distances di measure the distance of the
single features. Each facet distance di(x,z) is assigned
a weight ai. Note that dist(x,y) only qualifies as a met-
ric iff ai > 0∀i. In other cases, the measure might still
be suitable as a distance measure, but lacks properties
such as non-negativity and identity of points with dis-
tance 0. Stober and Nürnberger [23], Wolff et al. [27]
showed that using feature specific functions to calculate
facet distances di for different types of data in the feature
vectors can improve the results and the stability of model
training. This is only possible if the interpretation of a

3urlhiddenforblindreview
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facet xi in the feature vector is clearly defined, and there-
fore does not straightforwardly apply when using RBM
preprocessing of features. However, RBMs already sup-
ply a method of specialised treatment of different facets
by the nature of the transformation they define. Early
experiments have also shown possible further improve-
ments through convolution of feature information which
will be explored in future work.

4.1. Model Training

When modelling similarity based on user data, the con-
tribution of each facet distance to the comparison may
be different depending on the user’s input. In order to
satisfy the constraints given by users’ similarity judge-
ments, the weights ai in Equation (8) are learnt from the
observed data. A constraint h(x,y,z) determines whether
song x should be more similar to song y than to song z.

h(x,y,z) =

{
true iff x is more similar to y
f alse iff x is more similar to z (10)

Given our distance measure in Equation (8), we can infer
constraints on our similarity model. We indirectly opti-
mizing the boolean functions by optimizing the weighted
sum of differences between facet distances over all train-
ing triplets.

h(x,y,z) = ∑
i

ai(di(x,z)−di(x,y)) > 0 (11)

Let our training data be in the form of

D = {d(k) | k = 1, ...,M} where
d(k) = {x(k),y(k),z(k) | h(x(k),y(k),z(k)) = true}

with feature vectors x(k),y(k),z(k) ∈ RN . Given a training
set D we want to find a weight vector a ∈ RN which
maximizes

f (a) =
1
M

M

∑
k

∑
i

ai(di(x,z)−di(x,y)). (12)

4.2. Gradient Ascent
This standard optimisation method has been used by Sto-
ber and Nürnberger with the MagnaTagATune dataset,
and served as a good measure for baseline performance.
The function f (w) in (12) is linear and its optima may be
found at very large values of w if there is no constraint
applied. In our experiments we use gradient ascent with
regularization and early stopping to iteratively search for

the optimal weights ai. The iterative process uses the
following update rule:

a = a + η(∆a− γa), with

∆ai =
∂ f (a)

∂ai
=

1
M

M

∑
k

(di(x(k),z(k))−di(x(k),y(k)))

4.3. Support Vector Machine
The results of the gradient descent method are further-
more compared to the method of using Support Vector
Machines for distance metric learning as introduced by
Schultz and Joachims [19]. We apply this method as it
has been used on the MagnaTagATune dataset for learn-
ing distance metrics in [27].

For learning a weighted distance measure with SVMs,
the classifier is optimized to produce a vector of weights
a that fulfils the distance constraints. Here, for each con-
straint h(x,y,z), we construct a feature distance differ-
ence vector δ (x,y,z) ∈ RN with

δ
(x,y,z)
i = di(x,z)−di(x,y), (13)

= (xi− zi)
2− (xi− yi)

2 (14)

Optimization is performed as follows:

min
a,ξ

G(a) =
1
2

aT a + c ∑
(x,y,z)

ξ(x,y,z) (15)

s.t.∀(x,y,z) aT
δ

(x,y,z) ≥ 1−ξ(x,y,z)

ξ(x,y,z) ≥ 0

ai ≥ 0

Here, c determines a trade-off between regularisation
and the enforcement of constraints. The slack variables
ξ(x,y,z) allow for some constraints to be violated whilst
adding a penalty value to the optimisation result.

5. EXPERIMENTS

The MagnaTagATune dataset used for our experiments
contains audio features for over 25863 clips extracted by
The Echo Nest API as well as relative similarity data for
1019 of the clips. In order to allow for comparison with
previous results, our experiments use the similarity data
and cross-validation segmentation from [27]. The corre-
sponding similarity data and audio features are available
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online4. For details on the extraction of features and sim-
ilarity data we refer to [27]. All experiments with SVM-
Light were performed with the regularisation parameter
c = 1, which was found to give good results in previous
experiments.

5.1. RBM feature extraction

In this experiment we evaluate how the performance of
similarity learning models is affected by using the RBM
feature transformation as a preprocessing step. First,
the parameters of the RBM and its unsupervised train-
ing are explored and then fixed to compare results with
the data published in [27] using the same 10-fold cross-
validation.

Possible parameter combinations are tested using a grid
search over a predefined range of values as displayed in
Table 1 with following similarity modelling using the
similarity training sets. We then use the mean training
set accuracy of each tested model to fix a model and its
parameters used for the final evaluation. Optimal param-
eters were selected for each of the similarity learning al-
gorithms, and the configurations selected for testing are
depicted in Table 2. Since using training accuracy for
model selection is risky to overfitting, we carefully apply
strict regularlisation for training a model.

Param. Values Tested
hidNum 30,50,100,500,1000
lrate1 0.02,0.05,0.1,0.5,0.7
lrate2 0.1,0.5,0.7

momentum 0.05,0.1
cost 0.00002,0.01

Table 1: Values used for the RBM grid search

The “Original Features” used in our experiments are the
same as in [27]. They contain audio features from The
Echo Nest API: chroma and timbre information, as well
as features derived through classification (e.g. tempo and
meter). Furthermore, genre and other tag information is
included in binary features. Figure 2 shows an example
of feature transformation from original features to out-
puts from the hidden layer of an RBM trained on the
dataset.

Table 3 shows the performance of different feature pre-
processing strategies. For Gradient Ascent, the average

4http://mi.soi.city.ac.uk/datasets/ismir2012/

Approach
Param. GRAD SVM-Light
hidNum 500 1000
lrate1 0.70 0.05
lrate2 0.70 0.10

momentum 0.05 0.10
cost 2.0e−5 2.0e−5

Table 2: Parameters chosen for Gradient Descent
(GRAD) and SVM-Light in the final experiments.

Features
Appr. Original PCA RBM

GRAD 70.47 / 71.68 70.54 / 70.52 73.14 / 73.28
SVM 71.20 / 83.54 70.17 / 75.29 72.18 / 80.17

Table 3: Comparison of original features and those
with PCA and RBM preprocessing. Displayed are
test/training set results for configurations with best train-
ing success. The SVM Original values are taken from
[27].

result over several runs with the same RBM parametri-
sation is taken into the comparison to allow for a more
general evaluation of the probabilistic model. Unfortu-
nately, this was not possible with SVM-Light because of
time constraints, and the results of single runs are dis-
played for this approach.
For the original features, the results for gradient ascent
(GRAD) are comparable to those published in [27]. Note
that this gradient ascent approach differs slightly from
that in [22, 27], where the weights ai are constrained to
∑wi = 1. The SVM-Light results for original features are
reproduced from that publication. When using PCA, the
results for SVM-Light are slightly worse than in the orig-
inal features, while the gradient approach does improve
very little.

The RBM features significantly improve the results for
all approaches, with gradient ascent the best test results,
improving by 2.67% over the original features, while
SVM-Light gains 0.92%.

Figures 3 and 4 show the train and test set performances
of all learning algorithms with respect to the number of
hidden units in the RBM preprocessing. For these ex-
periments configurations of the RBM have been fixed
to those reported in Table 2, except for the hidNum pa-
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Fig. 2: Example feature transformation: (a) Original fea-
tures(audio and genre tags), (b) Transformed features
from hidNum = 50 hidden layer outputs of an RBM

rameter which is varied according to the values in Ta-
ble 1. SVM-Light reaches its highest performance with
the maximal number of 1000 hidden units. The perfor-
mance at 30 units very low at 65.40%. Using an output
feature dimension of 1000 gains 6.78% to a maximal per-
formance of 73.30%. This trend cannot be found for Gra-
dient Descent, which reaches its maximum performance,
also the best performance reported in this paper, at 500
hidden units.

6. DISCUSSION

The results in Table 3 show a general performance gain
when using Restricted Boltzmann Machines for feature
preprocessing in similarity learning. Apart from the
gains through transformation of the feature space, the
large dimensionality of the resulting features may im-
prove results as well: Different feature dimensions lead
to a different number of parameters ai. For SVM-Light,
the presented results were achieved with hidNum =
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Fig. 3: Test set performances of Gradient Ascent with
different dimensionality of RBM features.
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Fig. 4: Test set performances of SVM-Light with differ-
ent dimensionality of RBM features.

1000, allowing the model over 5 times more parameters
than for the original features, which have a dimensional-
ity of 197. On the other hand, learning models with many
parameters is also complex and requires a larger number
of training examples. Across algorithms, we found no
clear trend for the number of RBM features, i.e. RBM
hidden layer units. [25] compared the impact of parame-
ter reduction using PCA, showing slightly higher perfor-
mance of SVM-Light for the models with reduced fea-
ture dimensionality. But in [26], the authors found that
performance does not change significantly when reduc-
ing feature dimensionality.

In this study, the method of RBM preprocessing together
with selection of the best RBM features the on grounds
of training performance provides an effective way boost
classification performance. When available, an addi-
tional validation set might allow for an even better selec-
tion of promising features. Our experiments show that
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in this way basic learning algorithms such as gradient
ascent can adapt better to complex data such as the pre-
sented similarity ratings.

7. CONCLUSION AND FUTURE WORK
Our experiments show that transforming features using
RBMs can improve both results of similarity learning
with Gradient Ascent and Support Vector Machines on
music audio.

For Gradient Ascent, the model achieved competitive
performance to the other approaches, increasing the test-
ing accuracy from 70.47% to 73.14% For Support Vec-
tor Machines, the RBM features allowed for a smaller
but still significant rise from 71.20% to 72.18%. Com-
paring to the features extracted using PCA, the features
processed using RBM show better performance and more
consistent improvement.

For future work we are interested in discovering the simi-
larity relations by comparing subspace distances built by
combining different feature dimensions. By using vali-
dation sets, we expect to select RBMs with even better
generalisation. Furthermore, we would like to apply a
knowledge extraction method [21] to understand why the
similarity relation can be captured by only a single layers
of hidden units in the RBM.
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